Guided Bayesian imputation to adjust for confounding when combining heterogeneous data sources in comparative effectiveness research.

نویسندگان

  • Joseph Antonelli
  • Corwin Zigler
  • Francesca Dominici
چکیده

In comparative effectiveness research, we are often interested in the estimation of an average causal effect from large observational data (the main study). Often this data does not measure all the necessary confounders. In many occasions, an extensive set of additional covariates is measured for a smaller and non-representative population (the validation study). In this setting, standard approaches for missing data imputation might not be adequate due to the large number of missing covariates in the main data relative to the smaller sample size of the validation data. We propose a Bayesian approach to estimate the average causal effect in the main study that borrows information from the validation study to improve confounding adjustment. Our approach combines ideas of Bayesian model averaging, confounder selection, and missing data imputation into a single framework. It allows for different treatment effects in the main study and in the validation study, and propagates the uncertainty due to the missing data imputation and confounder selection when estimating the average causal effect (ACE) in the main study. We compare our method to several existing approaches via simulation. We apply our method to a study examining the effect of surgical resection on survival among 10 396 Medicare beneficiaries with a brain tumor when additional covariate information is available on 2220 patients in SEER-Medicare. We find that the estimated ACE decreases by 30% when incorporating additional information from SEER-Medicare.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method

The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...

متن کامل

Confounding and missing data in cost-effectiveness analysis: comparing different methods

INTRODUCTION Common approaches in cost-effectiveness analyses do not adjust for confounders. In nonrandomized studies this can result in biased results. Parametric models such as regression models are commonly applied to adjust for confounding, but there are several issues which need to be accounted for. The distribution of costs is often skewed and there can be a considerable proportion of obs...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

Confounding adjustment in comparative effectiveness research conducted within distributed research networks.

BACKGROUND A distributed research network (DRN) of electronic health care databases, in which data reside behind the firewall of each data partner, can support a wide range of comparative effectiveness research (CER) activities. An essential component of a fully functional DRN is the capability to perform robust statistical analyses to produce valid, actionable evidence without compromising pat...

متن کامل

Bayesian hierarchical modeling and the integration of heterogeneous information on the effectiveness of cardiovascular therapies.

When making therapeutic decisions for an individual patient or formulating treatment guidelines on a population level, it is often necessary to utilize information arising from different study designs, settings, or treatments. In clinical practice, heterogeneous information is frequently synthesized qualitatively, whereas in comparative effectiveness research and guideline development, it is im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biostatistics

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2017